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ON CURVES IN THE LIGHTLIKE CONE

HANDAN BALGETIR ÖZTEKIN1, MAHMUT ERGÜT1

Abstract. In this paper we define support function for curves with constant cone curvature κ

in the 2-dimensional lightlike cone and the evolute-involute curves and then characterize curves

which satisfy eigenvalue equations for the support function in relation to the evolute-involute

curves.
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1. Introduction

Lorentzian geometry plays an important role in that transition between modern differential
geometry and the mathematical physics of general relativity by giving an invariant treatment
of Lorentzian geometry. The fact that relativity theory is expressed in terms of Lorentzian
geometry is lucky for geometers, who can thus penetrate surprisingly quickly in to cosmology
(redshift, expanding universe and big bang) and a topic no less interesting geometrically, the
gravitation of a single star (perihelion procession, bending of light and black holes) [10].

In general relativity, null submanifolds usually appear to be some smooth parts of the achronal
boundaries, for example, event horizons of the Kruskal and Kerr black holes and the compact
Cauchy horizons in Taub-NUT spacetime and their properties are manifested in the proofs of sev-
eral theorems concerning black holes and singularities. Degenerate submanifolds of Lorentzian
manifolds may be useful to study the intrinsic structure of manifolds with degenerate metric and
to have a better understanding of the relation between the existence of the null submanifolds
and the spacetime metric [2, 3, 5, 9].

It is important to study submanifolds of the lightlike cone, because of relations between the
conformal transformation group and the Lorentzian group of the n-dimensional Minkowski space
En

1 and the submanifolds of the (n+1)-dimensional lightlike cone Qn+1[7, 12].
The set of all null vectors in TpM is called the lightlike cone (or null cone) at p ∈ M, where M

is a semi-Riemannian manifold. This terminology derives from relativity theory and particularly
in the Lorentzian case, null vectors are also said to be lightlike. For the study on lightlike cone,
we refer to [4, 6].

The studies on curves and its evolutes-involutes which satisfy the eigenvalue equations have
been done by many mathematicians. For example, in [8, 11], the authors investigated some
characterizations of plane curves in term of certain Euclidean curvature properties and stated
the classification relating eigenvalues to the geometry of curves. Furthermore, in [1], the authors
carried out some results which were given in [8] to nonnull curves in Minkowski plane.
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In this manuscript, due to importance of eigenvalue equation and curves theory in application
of the submanifolds theory, we studied the curves and its evolutes-involutes, and characterized
them with respect to eigenvalue equations for its support function.

2. Curves in the lightlike cone Qn+1

Let Em
q be the m−dimensional pseudo-Euclidean space with the metric

G(x, y) =< x, y >=
m−q∑

i=1

xiyi −
m∑

j=m−q+1

xjyj ,

where x = (x1, x2, ..., xm), y = (y1, y2, ..., ym) ∈ Em
q . Em

q is a flat pseudo-Riemannian manifold
of signature (m− q, q).

Let M be a submanifold of Em
q . If the pseudo-Riemannian metric G of Em

q induces a pseudo-
Riemannian metric G (respectively, a Riemannian metric, a degenerate quadratic form) on M,

then M is called a timelike (respectively, spacelike, degenerate) submnifold of Em
q .

Let c be a fixed point in Em
q and r > 0 be a constant. The pseudo-Riemannian sphere is

defined by
Sn

q (c, r) = {x ∈ En+1
q : G(x− c, x− c) = r2};

the pseudo-Riemannian hyperbolic space is define by

Hn
q (c, r) = {x ∈ En+1

q+1 : G(x− c, x− c) = −r2};
the pseudo-Riemannian lightlike cone (quadric cone) is defined by

Qn
q (c) = {x ∈ En+1

q : G(x− c, x− c) = 0}.
It is well-known that Sn

q (c, r) is a complete pseudo-Riemannian hypersurface of signature
(n − q, q), q ≥ 1, in En+1

q with constant sectional curvature r−2; Hn
q (c, r) is complete pseudo-

Riemannian hypersurface of signature (n−q, q), q ≥ 1, in En+1
q+1 with constant sectional curvature

−r−2; Qn
q (c) is a degenerate hypersurface in En+1

q . The spaces En
q , Sn

q (c, r) and Hn
q (c, r) are

called pseudo-Riemannian space forms. The point c is called the center of Sn
q (c, r), Hn

q (c, r) and
Qn

q (c). When c = 0 and q = 1, we simply denote Qn
1 (0) by Qn and call it the lightlike cone (or

simply the light cone) [10].
Let En+2

1 be the (n + 2)−dimensional Minkowski space and Qn+1 the lightlike cone in En+2
1 .

A vector α 6= 0 in En+2
1 is called spacelike, timelike or lightlike, if < α, α >> 0, < α, α >< 0 or

< α,α >= 0, respectively. A frame field {e1, .., en, en+1, en+2} on En+2
1 is called an asymptotic

orthonormal frame field, if

< en+1, en+1 >=< en+2, en+2 >= 0, < en+1, en+2 >= 1,

< en+1, ei >=< en+2, ei >= 0, < ei, ej >= δij , i, j = 1, ..., n.

We assume that the curve

x : I → Qn+1 ⊂ En+2
1 , t → x(t) ∈ Qn+1, t ∈ I ⊂ R

is a regular curve in Qn+1. In the following, we always assume that the curve regular and
x(t) ∦ x′(t) = dx(t)

dt , for all t ∈ I.

Definition 2.1. A curve x(t) in En+2
1 is called a Frenet curve, if for all t ∈ I, the vector fields

x(t), x′(t), x′′(t), ..., x(n)(t), x(n+1)(t) are linearly independent and the vector fields x(t), x′(t),
x′′(t), ..., x(n+1)(t), x(n+2)(t) are linearly dependent, where x(n)(t) = dxn(t)

dtn . Since < x, x >= 0
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and < x, dx >= 0, dx(t) is spacelike. Then the induced arc length (or simply the arc length) s

of the curve x(t) can be defined by

ds2 =< dx(t), dx(t) > .

If we take the arc length s of the curve x(t) as the parameter and denote x(s) = x(t(s)), then
x′(s) = dx

ds is a spacelike unit tangent vector field of the curve x(s). Now we choose the vector
field y(s), the spacelike normal space V n−1 of the curve x(s) such that they satisfy the following
conditions:

< x(s), y(s) >= 1, < x(s), x(s) >=< y(s), y(s) >=< x′(s), y(s) >= 0,

V n−1 = {spanR{x, y, x′}}⊥, spanR{x, y, x′, V n−1} = En+2
1 .

Therefore, choosing the vector fields α2(s), α3(s), ..., αn(s) ∈ V n−1 suitably, we have the
following Frenet formulas

x′(s) = α1(s)
α
′
1(s) = κ1(s)x(s)− y(s) + τ1(s)α2(s)

α
′
2(s) = κ2(s)x(s)− τ1(s)α1(s) + τ2(s)α3(s)

α
′
3(s) = κ3(s)x(s)− τ2(s)α2(s) + τ3(s)α4(s)

...

α
′
i(s) = κi(s)x(s)− τi−1(s)αi−1(s) + τi(s)αi+1(s)

...

α
′
n−1(s) = κn−1(s)x(s)− τn−2(s)αn−2(s) + τn−1(s)αn(s)

α
′
n(s) = κn(s)x(s)− τn−1(s)αn−1(s)

y′(s) = −
n∑

i=1
κi(s)αi(s),

(1)

where α2(s), α3(s), ..., αn(s) ∈ V n−1, < αi, αj >= δij , i, j = 1, 2, ..., n. The function κ1(s), ...,
κn(s), τ1(s), ..., τn−1(s) are called cone curvature functions of the curve x(s). The frame

{x(s), y(s), α1(s), α2(s), ..., αn(s)}
is called the asymptotic orthonormal frame on En+2

1 along the curve x(s) in Qn+1.

3. Curves with constant cone curvature in the lightlike cone Q2

In this section, we consider curves in the lightlike cone Q2 and define support function for
curves with constant cone curvature κ in the 2−dimensional lightlike cone and the evolute-
involute curves and then characterize curves which satisfy eigenvalue equations for the support
function in relation to the evolute-involute curves.

Let x : I → Q2 ⊂ E3
1 be a curve, then from (1), we have

x′(s) = α(s),
y′(s) = −κ(s)α(s),
α′(s) = κ(s)x(s)− y(s),

(2)

where s is an arc length parameter of the curve x(s) and x(s), y(s), α(s) satisfy

< x, x >=< y, y >=< x, α >=< y, α >= 0,

< x, y >=< α,α >= 1.

For an arbitrary parameter t of the curve x(t), the cone curvature function κ is given by

κ(t) =
< dx

dt ,
d2x
dt2

>2 − < d2x
dt2

, d2x
dt2

>< dx
dt ,

dx
dt >

2 < dx
dt ,

dx
dt >5

. (3)
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Using a orthonormal frame on the curve x(s) and denoting by κ, τ , β and γ the curvature,
the torsion, the principal normal and the binormal of the curve x(s) in E3

1 , we have

x′ = α

α′ = κx− y = κβ,

where κ 6= 0, < β, β >= ε = ±1, < α, β >= 0, < α, α >= 1, εκ < 0. Then we get

β = ε
κx− y√−2εκ

, ετγ =
κ′

2
√−2εκ

(x +
1
κ

y). (4)

Choosing

γ =

√
−εκ

2
(x +

1
κ

y) (5)

we obtain

κ =
√−2εκ, τ = −1

2
(
κ′

κ
). (6)

Theorem 3.1. The curve x : I → Q2 is a planar curve if and only if the cone curvature function
κ of the curve x(s) is constant [6].

If the curve x : I → Q2 ⊂ E3
1 is a planar cure, then we have the following Frenet formulas

x′ = α,

α′ = ε
√−2εκβ,

β′ = −√−2εκα.

(7)

Definition 3.1. Let x : I → Q2 be a curve with constant cone curvature κ and arc length
parameter s, then the support function of x(s) with respect to a fixed point p0 ∈ Q2 is defined by

ρ(p0) =< β, p0 − x > . (8)

Differentiating (8) with respect to s and using (7), we have

ρ′(p0) = −√−2εκ < α, p0 − x > (9)

and we get a representation of x(s) in terms of the support function:

x− p0 =
1√−2εκ

ρ′(p0)α− ερ(p0)β. (10)

Theorem 3.2. Let x : I → Q2 be a curve with constant cone curvature κ and arc length
parameter s, then the support function ρ(p0) of x(s) with respect to a fixed point p0 ∈ Q2 can be
written as follows:

(i) ρ(p0)(s) = c1s + c2,

for κ = 0, it is a part of circle;
(ii) ρ(p0)(s) = c1 cos

√−2κs + sin
√−2κs + 1√−2κ

,

for ε = 1, κ < 0, it is an ellipse;
(iii) ρ(p0)(s) = c1 cosh

√
2κs + c2 sinh

√
2κs− 1√

2κ
,

for ε = −1, κ > 0, it is a hyperbola; where c1, c2 ∈ E3
1 .

Proof. Differentiating (10), we get

1√−2εκ
ρ′′(p0) + ε

√−2εκρ(p0) = 1. (11)
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Solving this equation (11), we obtain that

ρ(p0)(s) = c1s + c2, κ = 0,

ρ(p0)(s) = ρ(p0)(s) = c1 cos
√−2κs + sin

√−2κs +
1√−2κ

, ε = 1, κ < 0,

ρ(p0)(s) = c1 cosh
√

2κs + c2 sinh
√

2κs− 1√
2κ

, ε = −1, κ > 0,

where c1, c2 ∈ E3
1 . ¤

Definition 3.2. Let x : I → Q2 be a curve with constant cone curvature κ and arc length
paraameter s. Then the locus of the centre of curvature of a planar curve x(s) is called the
evolute of the curve x(s) and given by

Ex(s) = x(s) +
1√−2εκ

β(s). (12)

From (12), the evolute curve Ex is not regular curve.

Definition 3.3. Let x : I → Q2 be a curve with constant cone curvature κ and arc length
parameter s. For a fixed value s1 ∈ R, the involute of the curve x(s) is defined by

Ix,s1(s) := x(s)− (s + s1)α(s). (13)

If we derivative of (13) with respect to s, we get

I ′x,s1
(s) = −ε(s + s1)

√−2εκβ(s). (14)

Thus the condition (s + s1) 6= 0 is equivalent to the regularity of the involute Ix,s1 and we
suppose all involutes to be regular. If s1 varies, one obtains a one-parameter family of involutes.

If {α, β} is an orthonormal frame of x then

αI = −εsign(s + s1)β

βI = εsign(s + s1)α (15)

defines an orthonormal frame of the involute Ix,s1 , where < αI , αI >= ε and < βI , βI >= 1.

Theorem 3.3. Let x : I → Q2 be a curve with constant cone curvature κ and arc length
parameter s. Then the involute Ix,s1 of x(s) satisfies the following properties:

(i) If {α, β} is an orthonormal frame of x(s) then

{αI = −εsign(s + s1)β, βI = εsign(s + s1)α}
is an orthonoral frame of Ix,s1 .

(ii) The cone curvature function κI of the involute curve Ix,s1 satisfies:

κI = − ε

2(s + s1)2
(16)

and we insert the equation (13)

Ix,s1(s) := x(s)− sign(s + s1)
√ −ε

2κI
α(s).

Proof. Considering (7) and (15), we have
√−2εκI =< α

′
I , βI >= −√−2εκ,

that means that κ = κI .
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From (14), we get
(s + s1)2 = − ε

2κI

and

s + s1 = sign(s + s1)
√ −ε

2κI
. (17)

Thus we can write (3.12) as follow:

Ix,s1(s) := x(s)− sign(s + s1)
√ −ε

2κI
α(s).

¤

Theorem 3.4. Let x : I → Q2 be a curve with constant cone curvature κ and arc length
parameter s. If there exists an appropriate s1εR such that the evolute curve

Ex(s) = x(s) +
1√−2εκ

β(s)

of x(s) and the involute curve Ix,s1(s) of x(s) associated to s1,

Ix,s1(s) := x(s)− (s + s1)α(s)

satisfy the relation
Ex = −λIx,s1 + const.,

then there exists p0εQ
2 such that the support function ρ(p0) with respect to p0 satisfies the

homogeneous eigenvalue equation

ρ′′(p0) + 2κλρ(p0) = 0.

Proof. If we use the equations (12) and (13), we have

Ex + λIx,s1 = (1 + λ)x− (s + s1)λα +
1√−2εκ

β

and using (7) we get
(Ex + λIx,s1)

′ = −λ(s + s1)ε
√−2εκβ.

Thus, there exists an apropriate s1εR such that

Ex + λIx,s1 = const. (18)

Let Ex + λIx,s1 = const. = (1 + λ)p0 for an appropriate p0εQ
2. Then we have

λ(Ix,s1 − p0) = −Ex + p0; (19)

that means that Ex and Ix,s1 are homothetic (without translation).
If we consider (10) and (19), we get

[(
λ

1√−2εκ
+

1√−2εκ

)
ρ′ − λ(s + s1)

]
α +

[
−ε(1 + λ)ρ +

1√−2εκ

]
β = 0.

The coefficients of the frame {α, β} must vanish, this means that

ρ(p0) =
ε

(1 + λ)
√−2εκ

(20)

Considering (11) into (20), we have

ρ′′(p0) + 2κλρ(p0) = 0. (21)

¤
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Now we determine the curves with constant cone curvature κ in 2-dimensional lightlike cone
Q2 which satisfy the homogeneous eigenvalue equation related with its evolutes and involutes
(21):

Case 1. Let λ = 0.

In this case ρ′′(p0) = 0 and a curve satisfying this equation is part of a circle.
Case 2. Let λ 6= −1 and λκ < 0.

In this case, we can write the general solution of the homogeneous eigenvalue equation (21)
in the form

ρ(p0)(s) = c1 cosh
√
−2λκs + c2 sinh

√
−2λκs.

Case 3. Let λ 6= −1 and λκ > 0.

In this case, we can write the general solution of the homogeneous eigenvalue equation (21)
in the form

ρ(p0)(s) = cos c1

√
2λκs + c2 sin

√
2λκs.
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